Autonomous vehicles in rural areas

Martin Adler Vrije Universiteit and AtAdlerAdvisory

Freeing the Road:

Shaping the future for autonomous vehicles

A Policy Network Special Report

Florian Ranft, Martin Adler, Patrick Diamond, Eugenia Guerrero and Matthew Laza November 2016

- Social and economic benefits for EU28 until ٠ 2050 (part of report)
- Policy environment and constraints (part of ٠ report)

Autonomous vehicle classification

	SAE Level	Name	Steering, acceleration, deceleration	Monitoring driving environment	Fallback performance of dynamic driving task	System capability (driving modes)
ors environment Human monitors environment	0	No automation the full-time performance by the human driver of all aspects of the dynamic driving task, even when enhanced by warning or intervention systems	2	2	2	n/a
	1	Driver assistance the driving mode-specific execution by a driver assistance system of either steering or acceleration/deceleration using information about the driving environment and with the expectation that the human driver perform all remaining aspects of the dynamic driving task.	2≈	•	•	Some driving modes
	2	Partial automation the driving mode-specific execution by one or more driver assistance systems of both steering and acceleration/deceleration using information about the driving environment and with the expectation that the human driver perform all remaining aspects of the dynamic driving task	8	•	•	Some driving modes
ronment	3	Conditional automation the driving mode-specific performance by an automated driving system of all aspects of the dynamic driving task with the expectation that the human driver will respond appropriately to a request to intervene	Â		•	Some driving modes
Car monitors envir	4	High automation the driving mode-specific performance by an automated driving system of all aspects of the dynamic driving task, even if a human driver does not respond appropriately to a request to intervene				Some driving modes
	5	Full automation the full-time performance by an automated driving system of all aspects of the dynamic driving task under all roadway and environmental conditions that can be managed by a human driver				All driving modes

Autonomous vehicle introduction

2017	2020	2025	2030	2035	2040	2045	2050	
AD market introduction:								
Test phase	Take-off phase	Rapid ex	pansion	Connectivity		Market saturation		

- Take –off phase L3 between 2020 and 2022, supported by industry statements and developments such as TESLA, Uber, Nissan, Google
- S-shaped adaptation curve (Sigmoid curve)
- Replacement rate at current automotive production levels

Social and economic benefits

Uncertainty and assumptions

Table 3: Autonomous vehicle supply-side effects on the economy

Effect	Market mechanism	Maximum Productivity impact	
Value of in-vehicle time	Travel cost, labour supply	2% - 3%	
Road congestion	Travel cost, commuting distance	0.5% - 1%	
Road accidents	Expected travel cost	2%	
Fuel-efficiency	Environment, public health, travel cost	0.5%	
Road infrastructure	-	-	
Build environment	Urban structure, city density	2% - 4%	
Labour market	Labour supply	1% - 5%	

Autonomous vehicle productivity benefits

- Conservative macro-economic model
- Model predicts productivity effects according to the social and economic factors, an uptake rate and three policy scenarios
- Autonomous vehicles can increase productivity by 0.15% annually and cumulatively 5.3% by 2050 Cumulative benefit is 17 trillion
- The model results are in-line and conservative in comparison to the other model for the US (which predicts +8%)

Autonomous vehicle productivity benefits

- Benefits can be split into its components
- The largest benefits are in-vehicle time, city density and labor markets
- Benefits are not homogenous across space, rural areas likely benefit less from the listed effects

Are all autonomous vehicles green?

- Not all autonomous vehicles are electric
- Combination of AV and electric drive has synergies – connectivity, efficiency, on-board activities, vehicle-to-grid
- Grid-source of energy important for climate
- Energy savings are partially transferred

Automotive industry

- Market grows in size and relevant products
- New players
- Mergers & Acquisitions increase
- EU companies are not technology leaders

	Vehicle	Turnover in %	Parts/accessories	Turnover in %
	manufacturers		manufacturers	
Germany	262	51.8	1,264	34.1
France	171	11.9	764	9.1
United Kingdom	731	9.7	1,242	5.8
Spain	113	6.2	806	7.1
Italy	144	5.8	1,405	8.5
Sweden	174	4.2	629	2.2
Czech Republic	101	2.6	825	8.3
Slovakia	54	2	188	3.6
Poland	113	1.9	920	6.8
Hungary	47	1.9	333	4.3
Netherlands	152	0.1	167	0.1
EU-28	2,256	100	10,300	100

Source: Euorstat (2015).¹⁷

Rural areas & AV

- Fewer AV benefits apply to rural areas
- Increase in mobility for physically impaired and other non-drivers such as the elderly, teens -> labor market matching implications
- AV in direct competition to public transport, opportunity for public finance
- Decrease in transport cost increases concentration (Economic Geography)
- Growth in sub-urban space predicted for Melbourne (KPMG, 2015)

Uncertain aspects AV

- AV travel demand from non-drivers and elderly: max. +14% (Harper et al., 2016)
- Shift in car travel demand through price reductions
- Shared economy? Only 15% vehicle fleet (OECD, 2016)?
- Negative externalities (congestion, pollution) and taxation
- Coexistence various technology steps might result in inefficiencies, introduction homogenous technology zones in cities

Policy debate

Figure 1: Timeline of AV adoption

Policy debate

- 1968 Vienna Convention
- GEAR 2030, EU working group to insure coordination
- The Amsterdam Declaration, infrastructure for connected AV by 2019
- Cybersecurity and privacy laws are important
- Public could benefit from open discourse on AV and related issues

Figure 3: National and international legislation

Source: based on Fraunhofer IAO (2015) Hochautomatisiertes Fahren auf Autobahnen, p 112.